Thermal Pressurization with Green's Functions

The thermal pressurization equations are:

$$
\begin{gather*}
\frac{\partial T}{\partial t}=\alpha_{\mathrm{th}} \frac{\partial^{2} T}{\partial z^{2}}+\frac{\tau V}{\rho c h \sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2 h^{2}}\right) \tag{1}\\
\frac{\partial p}{\partial t}=\alpha_{\mathrm{hy}} \frac{\partial^{2} p}{\partial z^{2}}+\Lambda \frac{\partial T}{\partial t} \tag{2}
\end{gather*}
$$

These are linear equations for T and p, where τV acts as a source term. So the solution may be expressed in terms of Green's functions,

$$
\begin{align*}
& T(z, t)=T_{\mathrm{ini}}+\int_{0}^{t} G_{\mathrm{th}}\left(z, t-t^{\prime}\right) \tau\left(t^{\prime}\right) V\left(t^{\prime}\right) d t^{\prime} \tag{3}\\
& p(z, t)=p_{\mathrm{ini}}+\int_{0}^{t} G_{\mathrm{hy}}\left(z, t-t^{\prime}\right) \tau\left(t^{\prime}\right) V\left(t^{\prime}\right) d t^{\prime} \tag{4}
\end{align*}
$$

It so happens that for the given pressurization equations, the Green's functions can be written in closed form:

$$
\begin{gather*}
G_{\mathrm{th}}(z, t)=\frac{1}{\rho c \sqrt{4 \pi \alpha_{\mathrm{th}} t+2 \pi h^{2}}} \exp \left(-\frac{z^{2}}{4 \alpha_{\mathrm{th}} t+2 h^{2}}\right) \tag{5}\\
G_{\mathrm{hy}}(z, t)=\frac{\Lambda \alpha_{\mathrm{hy}}}{\rho c\left(\alpha_{\mathrm{hy}}-\alpha_{\mathrm{th}}\right) \sqrt{4 \pi \alpha_{\mathrm{hy}} t+2 \pi h^{2}}} \exp \left(-\frac{z^{2}}{4 \alpha_{\mathrm{hy}} t+2 h^{2}}\right) \tag{6}\\
-\frac{\Lambda \alpha_{\mathrm{th}}}{\rho c\left(\alpha_{\mathrm{hy}}-\alpha_{\mathrm{th}}\right) \sqrt{4 \pi \alpha_{\mathrm{th}} t+2 \pi h^{2}}} \\
\exp \left(-\frac{z^{2}}{4 \alpha_{\mathrm{th}} t+2 h^{2}}\right)
\end{gather*}
$$

Since $z=0$ is the fault surface, and we are interested in the pore pressure $p(0, t)$ at the fault surface, it is convenient to write out the formula:

$$
\begin{equation*}
G_{\mathrm{hy}}(0, t)=\frac{\Lambda}{\rho c\left(\alpha_{\mathrm{hy}}-\alpha_{\mathrm{th}}\right) 2 \sqrt{\pi}}\left[\frac{\alpha_{\mathrm{hy}}}{\sqrt{\alpha_{\mathrm{hy}} t+\frac{1}{2} h^{2}}}-\frac{\alpha_{\mathrm{th}}}{\sqrt{\alpha_{\mathrm{th}} t+\frac{1}{2} h^{2}}}\right] \tag{7}
\end{equation*}
$$

The Green's function can be applied in the following way. Consider a series of times

$$
\begin{equation*}
0=t_{0}<t_{1}<t_{2}<t_{3}<\cdots \tag{8}
\end{equation*}
$$

Let τ_{i} be the average shear stress during the time interval $\left[t_{i-1}, t_{i}\right]$, and let V_{i} be the average slip rate during the time interval $\left[t_{i-1}, t_{i}\right]$. One way to define V_{i} is to take $V_{i}=\left|U_{i}-U_{i-1}\right| /\left(t_{i}-t_{i-1}\right)$ where U_{i} is the slip vector at time t_{i}. Then, the pore pressure p_{n} at time t_{n} can be taken as:

$$
\begin{equation*}
p_{n}=p_{\mathrm{ini}}+\sum_{i=1}^{n} G_{\mathrm{hy}}\left(0, t_{n}-\frac{1}{2}\left(t_{i}+t_{i-1}\right)\right) \tau_{i} V_{i}\left(t_{i}-t_{i-1}\right) \tag{9}
\end{equation*}
$$

Equation 9 is a discretized version of equation 4 . In writing equation 9 , we are pretending that all the heat produced during the time interval $\left[t_{i-1}, t_{i}\right]$ is produced instantaneously at the midpoint of the interval. This approximation seems to be good enough in practice.

In order to apply equation 9 , the computer code must store the values of $\tau_{i} V_{i}$ for all time steps since the beginning of the simulation.

Note that it is not necessary to compute the temperature, although one could easily do so:

$$
\begin{equation*}
T_{n}=T_{\mathrm{ini}}+\sum_{i=1}^{n} G_{\mathrm{th}}\left(0, t_{n}-\frac{1}{2}\left(t_{i}+t_{i-1}\right)\right) \tau_{i} V_{i}\left(t_{i}-t_{i-1}\right) \tag{10}
\end{equation*}
$$

