
Thermal Pressurization with Finite Differences  
 
The thermal pressurization equations, 
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can be solved with finite differences, as described below and implemented in the Matlab 
script thermpres_fd.m. Equations (1) and (2) are discretized on a finite interval at N+1 
equally spaced grid points 
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As the physical problem is for an infinite domain, the location of the exterior boundary 
must chosen to be sufficiently far removed from the fault that boundary effects do not 
influence the solution. A rough estimate is obtained from the diffusion length 
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α  is the larger of the two diffusivities. Second order central spatial difference 
operators are used: 
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This formula involves T-1 and TN+1, which are determined by the boundary conditions as 
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Time stepping can be done implicitly or explicitly. The simplest method is explicit Euler 
with constant time step Δt, in which an update from time tn = nΔt to tn+1 = (n+1)Δt is 
accomplished by approximating time derivatives as 
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and evaluating the right-hand sides of (1) and (2) time step n. The expressions can be 
solved explicitly for the values of T and p at time step n+1. Stability requires that 
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where α is the larger of the diffusivities and C is an O(1) coefficient that depends on the 
specific spatial difference operator and the method of enforcing the boundary conditions.  
 Exact solutions to the thermal pressurization equations are known only for the 
case of slip-on-a-plane, which is obtained in the h→ 0 limit, and for sliding with constant 
friction coefficient f and constant slip velocity V. For this case, the rate of heat production 
in (1) is 
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τV = f σ − p z=0( )V ,     (8) 
 
and the shear strength decays with slip as (Rice,  J. Geophys. Res., 2006) 
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No analytical solution exists for the Gaussian shear zone that is used in TPV105/106. 
However, the code can be run at high resolution to provide a reference solution. For 
TPV105/106 parameters, a solution to the slip-on-a-plane model with about 0.1% L2 
(root-mean-square) error is obtained using N = 100 and Δz = 1 mm; with N = 25 and Δz = 
4 mm, the L2 error is about 1%. The solutions with a finite shear zone are about an order 
of magnitude more accurate than those for slip-on-a-plane. 


