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1 Model Geometry

A planar fault lies in an isotropic, linear elastic whole-space. The medium

is homogeneous having constant density (ρ = 2670 kg/m3), S-wave speed

(cs = 3.464 km s−1), and P-wave speed (cp = 6 km s−1). To simplify later

expressions, a coordinate system will be adopted in which the fault is the

plane z = 0, with the hypocenter located at (x0, y0) = (-4.0,7.5 km). This

is shown in the figure below. Note the new hypocenter location relative to

that used in other TPV benchmark problems. The central portion of the

fault, −W < x < W , w < y < W , with W = 15 km and w=3 km, is

velocity-weakening. A transition layer of width w = 3 km in which the fric-

tional properties continuously change from velocity-weakening to velocity-

strengthening surrounds the central velocity-weakening region of the fault.

Outside of the transition region, the fault is velocity-strengthening up to 4

km.
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2 Friction Law

Let τ = (τx,τy) be the shear traction vector (specifically, the traction exerted

by the positive side of the fault on the negative side), the magnitude of which

is τ =
√
τ2x + τ2y , and let σ be the total normal stress acting on the fault,

taken to be positive in compression. In terms of the components of the

total stress tensor σij , τx = σzx, τy = σzy, and σ = −σzz. The fault zone

is assumed to be fluid-saturated with pore pressure p. The pore pressure

may vary both along the fault and perpendicular to it: p = p(x, y, z); the

pore pressure on the fault is pf = pf (x, y) = p(x, y, 0). The effective normal

stress (again, positive in compression) is σ = σ−pf . Let V = (Vx, Vy) be the

slip velocity vector, the magnitude of which is V =
√
V 2
x + V 2

y , and let δ =
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(δx, δy) be the slip vector. Slip is defined as the displacement discontinuity

across the fault: δi = ui(x, y, 0
+) − ui(x, y, 0−)(i = x, y) where ui(x, y, z)

is the displacement field. Likewise, Vi = vi(x, y, 0
+) − vi(x, y, 0−)(i = x, y)

where vi(x, y, z) is the particle velocity. Finally, let Ψ be the state variable

on the fault. The shear traction is always equal to the shear strength of the

fault, which is the product of the friction coefficient and effective normal

stress:

τ = f(V,Ψ)σ (1)

The friction law is the same as TPV 103/104. The friction coefficient is a

function of V and Ψ.

f(V,Ψ) = a sinh−1
[
V

2V0
exp

(
Ψ

a

)]
(2)

The state variable evolves according to the equation

dΨ

dt
= −V

L
[Ψ−Ψss(V )], (3)

Ψss(V ) = a ln

{
2V0
V

sinh

[
fss(V )

a

]}
. (4)

fss(V ) is the steady state friction coefficient, which depends on V and the

friction law parameters f0, V0, a, b, fw, and Vw:

fss(V ) = fw +
flv(V )− fw

[1 + (V/Vw)8]1/8
, (5)
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with a low-velocity steady state friction coefficient

flv(V ) = f0 − (b− a) ln(V/V0). (6)

The slip velocity vector points in the direction of the shear traction vector:

τ/τ = V /V (7)

The friction law parameters are given in the table below. Note that with

the exception of a and Vw, they are uniform on the fault.

f0 V0 a(x, y) b L fw Vw(x, y)

0.6 1× 10−6 m s−1 0.01 + ∆a(x, y) 0.014 0.4 m 0.2 0.1 m s−1 +∆Vw(x, y)

To stop the rupture, the friction law changes from velocity-weakening in the

rectangular interior region of the fault to velocity-strengthening sufficiently

far outside this region. The transition occurs smoothly within a transition

layer of width w = 3 km. Outside the transition layer, the fault is made

velocity-strengthening by increasing a by ∆a0 = 0.01 and Vw by ∆Vw0 = 0.9.

The changes in a and Vw, which are added to the values of a and Vw in the

velocity-weakening interior of the fault, are

∆a(x, y) = ∆a0[1−B1(x;W,w)B2(y;W,w)] (8)

∆Vw(x, y) = ∆Vw0[1−B1(x;W,w)B2(y;W,w)], (9)

in which
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B1(x;W,w) =


1, |x| ≤W

0.5
[
1 + tanh

(
w

|x|−W−w + w
|x|−W

)]
, W < |x| < W + w

0, |x| ≥W + w

(10)

B2(y;W,w) =



0.5
[
1 + tanh

(
w

w−y −
w
y

)]
, y < w

1, w ≤ y ≤W

0.5
[
1 + tanh

(
w

y−W−w + w
y−W

)]
, W < y < W + w

0, y ≥W + w

(11)

Bi are mathematically smooth versions of the boxcar function (meaning

that Bi and all of their derivatives are continuous).

3 Thermal Pressurization

In addition to changes in the friction coefficient, the fault strength can also

be altered by changes in pore pressure on the fault in response to shear

heating. Conservation of energy and fluid mass, together with Fourier’s law

and Darcy’s law and several assumptions including neglecting advection,

gives the following equations governing temperature T and pore pressure p

5



in the fault zone:

∂T

∂t
= αth

∂2T

∂z2
+

τV

ρch
√

2π
exp

(
−z2

2h2

)
, (12)

∂p

∂t
= αhy

∂2p

∂z2
+ Λ

∂T

∂t
, (13)

in which αth is the thermal diffusivity, αhy is the hydraulic diffusivity, ρc

is the volumetric heat capacity, and Λ quantifies the undrained thermal

pressurization response (i.e., the pore pressure increase per unit increase in

temperature). We have assumed a finite width shear zone in which the shear

strain rate distribution has a Gaussian shape with width h. Equations 12

and 13 hold at each point (x, y) on the fault. Both boundary and initial

conditions are required for T and p. The initial conditions are the constant

values Tini = 483.15 K and pini = 80 MPa. Under the assumptions of

spatially uniform properties in the z-direction and a localized region of shear

heating, appropriate boundary conditions are T → Tini and p → pini as

z → ±∞. Due to the symmetry of T and p about z = 0, the problem can

be reduced to one for only z ≥ 0 with the boundary conditions ∂T/∂z =

∂p/∂z = 0 at z = 0. The thermal pressurization parameters are given in

the table below. They are all uniform on the fault.

αth ρc Λ h

1× 10−6 m2/s 2.7 MJ/m3K 0.1 MPa K−1 20 mm

αhy(x, y) = 4.0× 10−4 + ∆αhy(x, y) (14)

6



The hydraulic diffusivity αhy is uniform (= 4× 10−4 m2/s) within velocity

weakening portion of the fault. αhy smoothly changes in the transition layer

following the boxcar function in Eq. 10,

∆αhy(x, y) = ∆αhy0 [1−B1(x;W,w)B3(y;W,w)], (15)

where, ∆αhy0 = 1 m2/s and

B3(y;W,w) =


1, y ≤W

0.5
[
1 + tanh

(
w

y−W−w + w
y−W

)]
, W < y < W + w

0, y ≥W + w.

(16)

4 Initial Conditions

At t=0, the fault is everywhere sliding in the horizontal direction with initial

velocity V = Vini (= 1× 10−16 m s−1). The initial shear stress on the fault,

which is also horizontal, is τini(x, y), the effective normal stress is σini(x, y),

and the initial value of the state variable is Ψini(x, y).

The initial normal stress and shear stress (in Pa) are given by:

σini(x, y) = min((ρ− ρw)gy, 45× 106) (17)

τini(x, y) = 0.41× σini(x, y) (18)

With ρw = 1000 kg/m3 the water density and g = 9.8 m/s2 the gravi-

tational acceleration.
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From equations 1 and 2, it follows that

Ψini(x, y) = a ln

[
2V0
Vini

sinh

(
τini
aσini

)]
(19)

In the medium surrounding the fault, the only nonzero stresses are the

horizontal shear stress and the total normal stress component acting on the

fault; these values are uniform and identical to those on the fault:

σzx(x, y, z) = τini and σzz(x, y, z) = −σini at t = 0. (20)

The medium is initially moving with equal and opposite horizontal velocities

of Vini/2 on the two sides of the fault:

vx(x, y, z) =


Vini/2, z > 0

−Vini/2, z < 0

at t = 0. (21)

Displacement in the medium and slip on the fault are measured from zero

at t = 0.

5 Nucleation Method

Starting at t = 0, rupture is nucleated by imposing a horizontal shear trac-

tion perturbation (i.e., a perturbation to τx) that depends on both space

and time. The particular form is such that the perturbation smoothly grows

from zero to its maximum amplitude ∆τ0 over a finite time interval T (not

to be confused with temperature), and is confined to a finite region of the
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fault of radius R. The perturbation is mathematically smooth in time and

space (i.e., the function and all derivatives are continuous). Specifically, the

perturbation is

∆τ(x, y, t) = ∆τ0F
(√

(x− x0)2 + (y − y0)2
)
G(t), (22)

in which

F (r) =


exp

(
r2

r2−R2

)
, r < R

0, r ≥ R
(23)

and

G(t) =


exp

(
(t−T )2

t(t−2T )

)
, 0 < t < T

1, t ≥ T
(24)

The perturbation is radially symmetric, with the radial distance away from

the hypocenter along the fault given by r =
√

(x− x0)2 + (y − y0)2. The

nucleation parameters are given in the table below.

∆τ0 R T (x0, y0)

50 MPa 1.5 km 1 s (−4 km, 7.5 km)
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The following data should be submitted to the code validation website

(where instructions for the data file formats can be found):

Time Histories of Fields at Fault Stations:

Report the complete time histories from t = 0 to t = 15 s of both components

of slip (δx and δy) and slip velocity (Vx and Vy), both components of shear

traction (τx and τy), the effective normal stress σ, the state variable (Ψ),

and temperature and pressure on the fault (T and p) at thirteen stations on

the fault:
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x (km) 0 0 0 9 12 12 15 18 -9 -12 -12 -15 -18

y (km) 3 7.5 12 7.5 3 12 7.5 7.5 7.5 3 12 7.5 7.5

Rupture Front Arrival Times:

Report the rupture front arrival time at all points within the fault (-22 km

< x < 22 km, 0 km < y < 22 km). The rupture front arrival time is defined

as the time at which the slip velocity, V, first exceeds 1 mm/s.

Time Histories of Fields at Free Surface Stations:

Report the complete time histories from t = 0 to t =15 s of all components

of displacement and particle velocity at each of the following six stations on

the free surface:

x (km) 0 0 12 12 -12 -12

z (km) 9 -9 6 -6 6 -6
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